Дроссель для люминесцентных ламп: схема подключения люминесцентной лампы с дросселем

Классификация и разновидности дросселей.

В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.

 Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.

ЭПРА

Теперь поговорим об электронных пускорегулирующих устройствах – ЭПРА. Задачи у этого устройства те же – пуск ЛЛ и ограничение через нее тока. И хотя задачи те же, выполняются они совершенно по-другому – при помощи электроники. Еще одно существенное отличие ЭПРА от ЭмПРА – первому не нужны дополнительные элементы – стартер и компенсационный стабилизатор.

Конструктивно электронный пускорегулирующий аппарат представляет собой моноблок, в котором размещена электронная схема, создающая высоковольтный разряд в момент пуска лампы и поддерживающая необходимый ток во время ее работы.

Как и электромагнитный собрат, электронный должен иметь ту же мощность, что и применяемые лампы. Отличие же в том, что если электромагнитный балласт рассчитан на работу с одной лампой (или с двумя 110-ти вольтовыми), то электронный в зависимости от конструкции и назначения может «в одиночку» поддерживать работу одной, двух и даже четырех ламп с рабочим напряжением 220 В.

Еще одно существенное отличие электронного балласта от электромагнитного – в процессе работы прибор преобразует сетевое напряжение частотой 50 Гц в напряжение частотой в несколько десятков килогерц. Что это дает? Люминофор ЛЛ имеет очень малую инерционность, а потому питаясь сетевым напряжением через ЭмПРА, лампа мерцает с частотой 100 Гц.

Из-за инерционности нашего глаза мы этого почти не замечаем, но, по сути, такая лампа представляет собой стогерцовый стробоскоп, в свете которого быстро движущиеся части машин могут казаться неподвижными, что очень опасно. Используя лампы на производстве, с этим недостатком борются, причем весьма успешно – запитывают рядом расположенные светильники от разных фаз или сдвигают на одном из светильников фазу фазосдвигающими конденсаторами, заставляя мигать светильники «вразнобой».

Но, во-первых, – это дает лишь частичный эффект, а, во-вторых, все это требует дополнительных затрат. ЭПРА же, питая лампы напряжением с частотами в десятки килогерц, не допускает даже малейшего мерцания лампы, поскольку инерционность у люминофора хоть и мала, но она есть.

Что касается коэффициента мощности, который у ЭмПРА без компенсационного конденсатора едва дотягивает до 0.4 – 0.5, то электроника вообще не нуждается в таких компенсаторах – она является очень слабой реактивной нагрузкой.

Схему подключения мы рассматривать не будем – она зависит от типа и назначения ЭПРА и, как правило, наносится на корпус устройства вместе с характеристиками ламп, для которых ЭПРА предназначен.

Возвращаясь к компактным люминесцентным лампам (КЛЛ) стоит отметить, что в них используются как раз ЭПРА, встроенные в цоколь.

Проверка работоспособности системы

Каждый заново созданный продукт (и любое техническое изделие таковым является) после изготовления следует протестировать. Это комплексный процесс, состоящий из проверок на безопасность, функционирование, полноту возможностей, соответствие техническим стандартам и нормам.

Функциональное тестирование даёт полную информацию о состоянии проверяемого продукта на текущий момент, а также подробное описание недоработок и перспективы их устранения. В ходе анализа учитывается специфика продукта и требования к нему.

Люминесцентные лампы в своём составе имеют вольфрамовую нить накаливания. Для повышения срока её живучести нить покрывается слоем активного щелочного металла. Но при частых и многочисленных включениях и выключениях защитное покрытие осыпается и нить перегорает. Проверить, цела ли нить накала, легко можно мультиметром. При нарушении герметичности баллона в лампу попадает воздух, и такую лампу следует заменять.

Неисправность дросселя обнаруживается по его гудению, мерцанию лампы, появлению «змеек» внутри лампы, слишком короткой работе после включения. Сгоревший дроссель пахнет горелым, он ремонту не подлежит, надо только менять

Что такое дроссель и для чего он предназначен?

Вне зависимости от типовых особенностей осветительного электрического прибора, на стадии их запуска появляется очень большое сопротивление.

Розжиг искусственного источника дневного света сопровождается своеобразным электрическим пробоем внутри атмосферы инертных газов, которые насыщены ртутными и натриевыми парами.

Отсутствие ограничения тока может спровоцировать чрезмерное выделения тепла и резкий перегрев газовых паров, что и становится причиной взрыва лампы дневного света.

Именно по этой причине в цепь добавляется сопротивление, представленное дроссельным устройством.

Чтобы минимизировать расходы электрической энергии на активное сопротивление, используется дроссельное устройство, не потребляющее мощность, а накапливающее и отдающее энергию в цепь.

Подключение с помощью современного электронного балласта

Устройства ЭмПРА имели ряд недостатков, что сильно ограничивало сферу применения люминесцентных источников света:

  • Долгий запуск светильников (достигал 3-х секунд, а выход на полную мощность мог достигать нескольких минут);
  • Проявление стробоскопического эффекта, что очень опасно для производства. При определённой частоте мерцания, вращающиеся механизмы могут показаться остановленными;
  • Неработоспособность при низких температурах. Например, в подвале или гараже использовать в холодное время года люминесцентные источники было невозможно;
  • Шумная работа — дроссель часто гудел, как при запуске, так и во время работы светильника;
  • Установка ЭмПРА в люминесцентных светильниках усложняет схему подключения, так как такой балласт состоит из нескольких раздельных блоков.

Современный тип ПРА – электронный. Это моноблок с печатной платой, на которой собрана вся схема для разогрева и запуска с помощью электронных компонентов. Так как вся схема собрана в едином корпусе, то не нужно собирать схему из дросселей и стартеров. Источники света подключаются только к выведенным клеммам на выходе блока.

ЭПРА работает на повышенной частоте, от 60 до 140 кГц, что исключает появление мерцания и стробоскопического эффекта. Запуск происходит быстро, без дополнительных вспышек и звуковых эффектов.

Электронный балласт

Современные компоненты позволяют изготавливать электронные ПРА более экономичными и компактными, что позволяет встраивать ЭПРА в корпус осветительного прибора. А также появилась возможность изготавливать малогабаритные люминесцентные лампы, например, с цоколем Е27, часто называемые энергосберегающими. Колба, у таких источников света часто изготовлена в виде спирали, что позволяет сделать её большой длины при меньших габаритах. Подключаются такие источники света к сети простым вкручиванием в патрон.

Компактная люминесцентная лампа

Можно выделить следующие достоинства ЭПРА:

  • Быстрый запуск в работу;
  • Больше экономичность, по сравнению со старыми типами электромагнитных балластов;
  • Отсутствие шума при запуске и работе;
  • Некоторые модели работают также при отрицательных температурах;
  • Высокая отказоустойчивость;
  • Отсутствие сильного нагрева;
  • Стабильный световой поток.

Принцип работы ЭПРА

После подачи питания, напряжение выпрямляется диодным мостом и конденсатором и поступает на высокочастотный генератор. Импульсы высокой частоты поступают на электроды источника света. При высокой частоте интенсивность нагрева электродов не так интенсивна, но со временем частота начинает падать. При этом напряжение в источнике света увеличивается, контур питания близится к резонансу, интенсивность нагрева растёт.

В определённый момент, происходит пробой газовой среды, и лампа начинает светиться. Устройство ЭПРА таково, что если, со временем эксплуатации, источнику света потребуется большее напряжение для пробоя и начала работы, то он сможет его обеспечить, из-за особенностей своей работы.

Особенности схемы

Так как электронный балласт выполнен в едином корпусе с выведенными наружу клеммниками, то подключить его не составляет особого труда. Не требуется сборка схемы с дросселем и стартером. Тем более, что на корпусе схема соединения с источниками света чаще всего напечатана. Если же её нет, то она обязательно будет в инструкции к устройству.

На входные клеммы ЭПРА подключаются фаза, ноль и заземление от внешней сети. А на выходе два двойных клеммника, куда подключается одна лампа. Типовая схема подключения к одному источнику света выглядит примерно так:

Схема подключения люминесцентной лампы к ЭПРА

Но, так как конструкция балласта может отличаться, а также он может быть предназначен для подключения нескольких источников света, то лучше внимательно рассмотреть схему в инструкции для каждого конкретного устройства.

Схема подключения ЭПРА на две лампы

Также различные схемы подключения люминесцентных источников света, для понимания, можно посмотреть в видео:

Как подключить люминесцентную лампу

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

ПлюсыМинусы
Высококлассный уровень надежности, доказанный практикой и временем.Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции.Повышенный расход электроэнергии.
Удобство эксплуатации модуля.Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей.Слышен гул работы дросселя.
Количество фирм производителей.Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
ДостоинстваНедостатки
Автоматическая настройка балласта под различные виды ламп.Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Один из ЭмПРА

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

https://youtube.com/watch?v=8fF5KQk4L2k

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Неисправности и ремонт электромагнитного ПРА

Чаще всего, источником неисправностей, связанных с применением ламп дневного света, является электрическая схема включения ПРА и стартера.

Мгновенно определить причину неисправности достаточно сложно, однако, существуют характерные визуальные эффекты, позволяющие выделить среди причин, вызвавших дефект, неисправный дроссель.

К таким визуальным эффектам относятся:

  1. “Огненная змейка”, вьющаяся по колбе. Ее появление свидетельствует о том, ток в лампе превышает допустимое значение, вследствие чего, электрический разряд стал нестабильным. Если при проверке вольт-амперной характеристики лампы, выявлены несоответствия заданным параметрам, то дроссель нужно менять.
  2. Потемнение колбы в зоне выходных контактов. Если потемнела колба в зоне цоколя, значит лампа скоро выйдет из строя. Основная причина этого явления – несоответствие значений пускового и рабочего тока вольт-амперной характеристике. Это чаще всего связано с неисправностью ПРА.
  3. Перегоревшие спирали. Чаще всего, спирали в лампе дневного света перегорают по причине сильной изношенности изоляции обмотки ЭмПРА.
  4. Запах гари или появление посторонних звуков. Возможно межвитковое замыкание в катушке индуктивности.
  5. Лампа не включается. Причиной также может быть неисправный ПРА, в котором произошел обрыв провода в обмотке. Правда этот вид неисправности встречается редко.

Проверку дросселя лучше всего проводить с помощью контрольного, заведомо исправного светильника. Для этого необходимо два провода, идущие от него соединить с цоколем проверочного светильника и включить эту конструкцию в электрическую сеть. Если люминесцентный светильник загорится в полную силу, значит дроссель исправен.

Ремонт

Самостоятельный ремонт ПРА рекомендуется проводить только специалистам, имеющим определенный опыт в осуществлении слесарных и электро-монтажных работ. Кроме того, необходимо наличие измерительных приборов и знание основных правил техники безопасности.

Приступая к замене или ремонту дросселя, необходимо отключить светильник от сети электропитания. Простое отключение его с помощью выключателя не избавит его от наличия напряжения на лампе.

Только после этого можно приступить к демонтажу ПРА и установке на его место нового. При этом, необходимо внимательно следить за тем, чтобы соединить провода в том же порядке, в каком они были подключены ранее.

ВАЖНО: схемы подключения конкретных моделей нанесены на их корпусах. Там же указывают рабочее напряжение и электрическое сопротивление обмотки индуктивности

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Как устроена и работает ЛДС

Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.

Схема люминесцентной лампы

Все это ЛДС, работающие на одном принципе.

Для нормальной работы люминесцентного светильника необходимо выполнить два условия:

  1. Обеспечить начальный пробой межэлектродного промежутка (запуск).
  2. Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).

Пуск лампы

В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.

До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.

Стартеры для пуска ЛДС на различные напряжения

Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.

Поддержание рабочего режима

Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:

  1. Электромагнитные (дроссельные).
  2. Электронные.

Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.

Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:

Электронное пускорегулирующее устройство для люминесцентной лампы

Включение ламп дневного света

Хотя люминесцентную лампу нельзя просто воткнуть в розетку, запустить ее совсем несложно и под силу каждому, кто знаком с электрикой. Для этого достаточно обзавестись соответствующим пускорегулирующим устройством того или иного типа и собрать несложную схему.

Использование электромагнитного дросселя и стартера

Это, пожалуй, самый простой и бюджетный вариант. Для создания люминесцентного светильника понадобится лампа дневного света, электромагнитный балласт (дроссель), мощность которого соответствует мощности лампы, и стартер с рабочим напряжением 220 В (указано на корпусе). Схема подключения дросселя для люминесцентных ламп будет выглядеть так:

Схема подключения люминесцентной лампы с дросселем.

Работает схема следующим образом. При подключении светильника к сети лампа не горит – напряжения на ее электродах недостаточно для зажигания. Но одновременно это же напряжение поступает через спирали лампы на стартер, представляющий собой газоразрядную лампу со встроенной биметаллической пластиной.

Нагревшаяся пластина замыкает стартер накоротко, и возросший ток разогревает спирали лампы дневного света. Через некоторое время биметаллическая пластина остывает и разрывает цепь подогрева. За счет обратной самоиндукции дросселя на уже разогретых катодах ЛДС происходит бросок напряжения, поджигающий лампу. Благодаря возникшему тлеющему разряду напряжения на стартере уже не хватает для его срабатывания, и в дальнейшей работе он не участвует. Дроссель же ограничивает ток через колбу ЛДС, обеспечивая ей номинальный рабочий ток.

При необходимости один дроссель может питать и две лампочки, но здесь необходимо выполнить три условия:

  1. Мощность лампочек должна быть одинаковой.
  2. Мощность дросселя должна равняться суммарной мощности лампочек.
  3. Напряжение срабатывания стартеров (оно указано на корпусе устройства) должно быть 127 В.

Схема люминесцентного светильника с двумя лампами

Обратите внимание: соединение ламп должно быть последовательным и ни в коем случае не параллельным

Работа люминесцентного светильника с ЭПРА

Если вы будете использовать в своем светильнике электронный балласт, то стартер не понадобится (он входит в ЭмПРА, хотя и выполнен отдельным узлом). Дело в том, что для пуска осветителя электронный балласт использует не подогрев спирали, а высокое напряжение (до киловольта), обеспечивающее разряд между электродами. Единственное условие, которое нужно соблюдать – мощность балласта должна равняться номинальной мощности осветителя. Схема же такого светильника будет совсем простая:

Включение электронного балласта для люминесцентных ламп (схема 36w)

Поскольку обычные ЭПРА не могут работать в двухламповых светильниках, выпускаются двухканальные приборы. По сути, это два обычных ЭПР в одном корпусе.

Схема светильника 2×36 с электронным балластом.

Приведенная схема не является единственной и зависит как от типа пускорегулирующего устройства, так и от производителя. Обычно она наносится прямо на корпус прибора:

Схема подключения и мощность осветителей(2х36) нередко наносится на корпус балласта.

Принцип работы дросселя.

Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.

Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.

При подаче питания на схему происходит следующее:

  1. Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
  2. В колбе стартера происходит ионизация газа, температура растет.
  3. Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
  4. Этого тока вполне достаточно для разогрева электродов лампы EL
  5. В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
  6. Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.

Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры

Дополнительно дроссель снижает помехи и сглаживает пульсации

Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Электронный дроссель для люминесцентных ламп

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий