Расчёт веса каркасного дома, определение площади и веса фундамента, нагрузки на грунт

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Формула определения средней величины осадки по схеме линейно-деформируемого слоя (приложение Г СП 22.13330.2011).

Схема применения методики линейно-деформируемого слоя.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Формула Терцаги

Формула Терцаги описывает закономерность уплотнения грунтов и их компрессионное сжатие. Для исследования грунтов редко выбирают метод трехосного сжатия ввиду его сложности, метод одноосного сжатия можно применять лишь к узкому кругу грунтов. Именно поэтому Терцаги рассматривает одноосное сжатие в жесткой таре, где стенки не дают образцу деформироваться.

По мере уплотнения, то есть сокращения объема полостей, давление возрастает. В результате становится понятно, то сумма деформаций образца составляется из пластической и остаточной деформации. (ξ1= ξp+ ξв)

Рис. 4 График нагружения грунта

При выполнении повторного нагружения основанию передаются только упругие деформации.

1.2 Определение производных и классификационных характеристик грунтов

Определение производных и классификационных характеристик грунтов производится в соответствии с рекомендациями ГОСТ {1}. При определении данных характеристик в расчетах принимают участие основные физические показатели грунтов, приведенные в задании (см. табл. 2)

1.) Плотность сухого грунта:

1) для верхнего слоя: г/см3;

2) для среднего слоя: г/см3;

3) для нижнего слоя: г/см3.

2.) Пористость грунта:

1) для верхнего слоя: ;

2) для среднего слоя: ;

3) для нижнего слоя: .

3.) Коэффициент пористости грунта:

1) для верхнего слоя:;

2) для среднего слоя: ;

3) для нижнего слоя: .

4.) Коэффициент пористости грунта при влажности на границе текучести ():

1) для верхнего слоя: ;

2) для среднего слоя: .

5.) Степень влажности — степень насыщенности под водой: ;

1) для верхнего слоя: ;

2) для среднего слоя:;

3) для нижнего слоя: .

6.) Число пластичности: ,;

1) для верхнего слоя: ;

2) для среднего слоя: .

7.) Показатель текучести: ,

1) для верхнего слоя: ;

2) для среднего слоя: .

8.) Показатель JSS: ;

1) для верхнего слоя: ;

2) для среднего слоя: .

9.) Удельный вес грунта в природном состоянии:

где — ускорение свободного падения на земле;

1) для верхнего слоя: ;

2) для среднего слоя: ;

3) для нижнего слоя: .

10.) Удельный вес частиц грунта: ;

1) для верхнего слоя: ;

2) для среднего слоя: ;

3) для нижнего слоя: .

11.) Удельный вес сухого грунта: ;

1) для верхнего слоя: ;

2) для среднего слоя: ;

3) для нижнего слоя: .

12.) Удельный вес грунта в насыщенном водой состоянии: ,

где — удельный вес воды;

1) для среднего слоя: .

13.) Удельный вес грунта во взвешенном водой состоянии: ,

1) для нижнего слоя: .

14.) Степень неоднородности песков: ,

где d60, d10 — диаметры частиц, мм, меньше которых в грунте содержится соответственно 60 и 10% (по массе) частиц.

1) для нижнего слоя: .

15.) Высота капиллярного поднятия воды: ;

1) для нижнего слоя: .

Данные для построения кривых гранулометрического состава

Таблица 1.1

Диаметр частиц, мм

Диаметр частиц , мм

lg d

Содержание частиц данного диаметра,%

Суммарное содержание частиц диаметром менее данного, %

1-й слой I 2-й слой I 3-й слой

1-й слой

2-й слой

3-й слой

0,005

5

0,70

7,0

20,0

24,9

33,1

9,7

5,0

0,3

2,0

25,0

25,0

32,0

8,0

7,0

0,9

0,1

0,6

1,0

0,9

2,5

39,0

29,00

23,0

2,8

1,2

7,0

2,0

0,6

0,01

10

1,00

27,0

27,0

1,6

0,05

50

1,70

51,9

52,0

2,5

0,10

100

2,00

85,0

84,0

5,0

0,25

250

2,40

94,7

92,0

44,0

0,50

500

2,70

99,7

99,0

73,0

1,00

1000

3,00

100,0

99,9

96,0

2,00

2000

3,30

100,0

98,8

100,0

Процентное содержание частиц

%

Глинистые частицы

Пылеватые частицы

Песчаные частицы

Гравийные

пылев.

мелкие

средней крупности

крупные

100

90

80

70

60

50

40

30

20

10

Lg d

0,00

0,30

0,48

0,60

0,70

0,79

0,84

0,90

0,95

1,00

1,3

1,48

1,60

1,70

1,79

1,84

1,90

1,95

2,00

2,30

2,48

2,60

2,70

2,79

2,84

2,90

2,95

3,00

3,30

3,48

d, мк

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

20

30

40

50

60

70

80

90

100

200

300

400

500

600

700

800

900

1000

2000

3000

d, мм

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

2,0

3,0

Интегральная кривая гранулометрического состава грунта

Таблица 1.2

Армирование

Железобетонную ленту армируют каркасом из рабочих стальных стержней и связующих элементов. Применяют рифленый и гладкий прокат классов А400-500 для основных, А240 – для конструктивных прутков. Расчет и технология нормируются СНиП 52-01-2003, СП 63.13330.2012.

Каркасы представляют собой пространственные конструкции из продольных и поперечных стержней, соединенных хомутами. Первые воспринимают растягивающие напряжения, вторые – распределяют их равномерно между вертикальными и горизонтальными элементами.

Армирование МЗЛФ для каркасного дома рассчитывают по упрощенной схеме, где определяется минимально допустимая площадь стержней. Она составляет 0,1 % сечения ленты.

При ширине фундамента 300 мм и глубине заложения 400 мм с учетом высоты цоколя 600 мм рабочая площадь составляет 300000 мм². Профили должны иметь суммарное сечение не менее 300000х0,001=300 мм². Этому значению соответствуют несколько позиций из таблицы сортамента стали.

С учетом существующих ограничений на участках длиной свыше 3 м разрешено применять арматуру диаметром от 12 мм. Поэтому каркас изготавливают из 4 стержней, по 2 в нижнем и в верхнем ряду.

Поперечную арматуру подбирают, исходя из высоты каркаса. Если она меньше 80 см, используют проволоку диаметром 6 мм, при большей – стержни с сечением 10 мм. Шаг крепления – 25-30 см. Хомуты связывают механическим способом или вручную.

Требуемый расход арматуры находят по чертежу, приобретают с запасом 5 %.

2001photo.com

Расчет веса одноэтажного дома

Исходные данные дома

Требуется рассчитать вес дома, изготовленный по каркасной технологии: одноэтажный, с холодным чердаком, размер в плане 8,1 х 14,4 м. Крыша двускатная, металлочерепица, со свесами по 0,5 м, уклон 2/5. Высота стен 2,7м. Толщина несущих стен 150 мм, перегородок 100 мм. Внутри здания одна несущая стена по длинной стороне (14,4м).

Площади поверхностей

  1. Площадь несущих стен по периметру: (8,1+14,4)*2*2,7 = 121,5 м2.
  2. Фронтоны (оба) 8,1*1,6/2*2=13 м2.
  3. Площадь внутренней несущей стены: 14,4*2,7 = 38,9 м2.
  4. Перегородки: 28*2,7 = 75,6 м2.
  5. Площадь перекрытий (пол и потолок): 8,1*14,4 = 116,7 м2.
  6. Площадь кровли, в горизонтальной проекции, т. е. не учтена длина скатов, для расчета снеговой нагрузки : 15,4*9,1 = 140,2 м2.
  7. Площадь кровли, в вертикальной проекции, для расчета ветровой нагрузки : 15,4*1,6 = 24,6 м2.
  8. Площадь кровли, с учетом длины скатов: 15,4*5,1*2 = 157 м2.

Рассчитываемые нагрузки

  1. 1м2 несущей стены 150 мм с утеплителем — 50кг/м2.
  2. 1м2 перегородки 100 мм с утеплителем — 35кг/м2.
  3. 1м2 фронтонов — 35кг/м2.
  4. Перекрытие чердачное, неэксплуатируемое — 70кг/м2. Примем за 100кг/м2, т. к. на чердаке буду складывать немного хлама.
  5. Цокольное перекрытие — 100-150 кг/м2. Примем за 150 кг/м2, т. к. возможна стяжка и керамогранит, что утяжеляет вес перекрытия дома.
  6. Кровля металлочерепица — 30 кг/м2.
  7. 150 кг/м2 — полезной нагрузки на цокольное перекрытие дома (пол).
  8. Снежный покров для Ярославской области 180 кг/м2 крыши.
  9. Ветровая нагрузка на крышу 23*0,75 = 17,25кг/м2
  10. Столб фундамента высотой 190 см, диаметром 20 см: 1,9*0,03*2400= 137 кг/шт.

Расчет веса дома

  1. Несущие стены: (121,5 + 38,9)*50 = 8020 кг.
  2. Фронтоны: 13*35=455 кг.
  3. Перегородки: 75,6*35 = 2646 кг.
  4. Перекрытия оба: 116,7*(100+150) = 29175 кг.
  5. Кровля: 157*30 = 4710 кг.
  6. Снег: 140,2*180 = 25236 кг.
  7. Полезная нагрузка: 116,7*150 = 17505 кг.
  8. Фундамент (допустим 40 столбов) 137*40 = 5480 кг.
  9. Ветровая нагрузка: 24,6 *17,25=425 кг.

Итого округленно: 93700 кг.

Исходные данные дома

Требуется рассчитать вес каркасного дома: 1-й этаж со стенами 2,7 метра, 2 этаж мансардный, со стенами 1,6 метра, по центру обоих этажей несущая стена. Размер здания в плане 8,1х10 м. Крыша с уклоном 2/5, двускатная, металлочерепица, со свесами по 0,5 м. Толщина несущих стен 150 мм, перегородок 100 мм. Внутри здания одна несущая стена по длинной стороне (9,4м).

Площади поверхностей

  1. Площадь несущих стен 1 этажа: (8,1+10)*2*2,7= 97,7 м2.
  2. Площадь стен 2 этажа с утепленным фронтоном: 1,6*(10+8,1)*2+13= 70,9 м2.
  3. Площадь внутренних несущих стен (1 и 2 этажи): 10*2,7*2= 54 м2.
  4. Перегородки: 28*2,7= 75,6 м2.
  5. Площадь перекрытия (пол и потолок): 8,1*10= 81 м2.
  6. Площадь кровли, в горизонтальной проекции, т. е. не учтена длина скатов, для расчета снеговой нагрузки : 11*9,1= 100,1 м2.
  7. Площадь кровли, в вертикальной проекции, для расчета ветровой нагрузки : 11*1,6= 17,6 м2.
  8. Площадь утепленной части кровли: 10*4,2*2= 84 м2.
  9. Площадь свесов кровли: 0,5*(11+4,2+4,2)*2= 19,4 м2.

Рассчитываемые нагрузки

  1. 1м2 несущей стены 150 мм с утеплителем — 50кг/м2.
  2. 1м2 перегородки 100 мм с утеплителем — 35кг/м2.
  3. Перекрытие 1 этажа 150 кг/м2.
  4. Перекрытие 2 этажа 100 кг/м2
  5. Кровля металлочерепица с утеплением — 80 кг/м2.
  6. Кровля свесы — 30 кг/м2.
  7. 150 кг/м2 — полезной нагрузки на каждое перекрытие.
  8. Снежный покров для Ярославской области 180 кг/м2.
  9. Ветровая нагрузка 23*0,75 = 17,25кг/м2
  10. Фундаментный столб высотой 190 см, диаметром 25 см: 1,9*0,05*2400=230 кг.

Общий вес дома с мансардой

  1. Несущие стены: (97,7+70,9+54)*50= 11130 кг.
  2. Перегородки: 75,6*35= 2650 кг.
  3. Перекрытия двух этажей: 81*150 + 81*100= 20250 кг.
  4. Кровля утепленная: 84*80= 6720 кг.
  5. Кровля свесы: 19,4*30= 580 кг.
  6. Снег: 100,1*180= 18020 кг.
  7. Полезная нагрузка двух этажей: 2*81*150= 24300 кг.
  8. Фундамент (допустим 22 столба): 22*230= 5060 кг.
  9. Ветровая нагрузка: 17,6*17,25= 300 кг.

Итого: 89 010 кг.

Расчёт нагрузки на свайный фундамент

Особенностью расчёта свайного основания, является необходимость выявления массы здания (P), которая делится на количество опор.Внимание! Требуется подбирать сваи с нужными показателями длины и необходимыми прочностными характеристикам, принимая во внимание геологические характеристики грунта. Так как в процессе эксплуатации свайный фундамент несет те же нагрузки, что и остальные виды фундамента — от массы здания, полезного давления, снежного покрова и ветра

Рассчитывать нагрузку на свайный фундамент необходимо для того, чтобы в дальнейшем при проектировании ее можно было сопоставить с максимально допустимой нагрузкой на грунт строительной площадки, и при необходимости увеличить число свай либо сечение используемых опор Чтобы сопоставить допустимые нагрузки на свайный фундамент и грунт необходимо выполнить следующие расчеты:

  • Определить вес здания и все сопутствующие нагрузки, просуммировать их и умножить на коэффициент запаса надежности;
  • Определить опорную площадь одной сваи по формуле: «r2 * 3.14» (r- радиус сваи, 3,14 — константа), после чего вычислить общую опорную площадь основания, умножив полученную величину на количество свай в фундаменте;
  • Рассчитать фактическую нагрузку на 1 см2 грунта: массу здания разделяем на опорную площадь фундамента;
  • Полученную нагрузку сопоставить с нормативной допустимой нагрузкой на грунт.

Для примера: дом массой 95 тонн. (с учетом снеговых и ветровых нагрузок) строится на фундаменте из 50 буронабивных свай, общая опорная площадь которых составляет 35325 см2. Грунт на участке представлен твердыми глинистыми породами, которые выдерживают нагрузку в 3 кг/см2.

Фактическая нагрузка на грунт: 95000/35325 = 2,69 кг/см2.

Как показывают расчеты, нагрузки от здания, передаваемые фундаментов на грунт, позволяют реализовывать данный проект в конкретных грунтовых условиях.Важно! Если бы нагрузки были больше допустимых, потребовалось бы увеличить опорную площадь фундамента, увеличив количество свай либо их сечение

Климатические особенности

От климатических условий зависит всё: и выбор толщины стены дома, и тип его основания, и другие важнейшие условия. Если с центральными регионами страны всё более-менее понятно, то вот в регионах с экстремальными температурными условиями разобраться следует подробнее.


Климатическая карта России

Например, как уже отмечалось выше, на горных почвах потребуется свайное основание для дома, там где температура воздуха ниже средней по стране ,придётся делать глубокий фундамент, причём чем глубже располагается его подошва, тем лучше.

Кстати, тут ещё стоит отметить и такую особенность: глубина промерзания грунтов – показатель сезонный и напрямую зависит от типа климата. Здесь можно привести следующие данные по глубине промерзания:

  • для суглинистых почв – 0,23 м (среднее значение за год);
  • для песчаных – 0,28 м;
  • для гравелистых – 0,3 м;
  • для обломочных (скальных или горных) – 0,34 м.

Данный показатель также может колебаться не только в плане типов почв, но и географического месторасположения участка. Например, на том же Крайнем Севере глубина промерзания даже в среднем значении будет существенно выше (1 м и более – это уже регионы с вечной мерзлотой, где капитальные строения, собственно говоря, обычно и не возводятся).


Расчётная таблица несущей способности разных типов грунтов

Это то же самое, что построить десятиэтажных жилой дом в Антарктиде или на Северном полюсе. В общем и целом, вес каркасного дома и его основания – важнейшие критерии, которые всегда обязательно нужно учитывать. Если неправильно рассчитать эти параметры, то дом попросту просядет.

Правда, если “ошибиться” в меньшую сторону (когда вес дома и его основания меньше), то это будет даже хорошо, хотя смета строительства увеличится. В общем, остаётся пожелать закончить строительство как можно быстрее!

Расчёт площади и веса

Расчёт площади фундамента, как и веса, должен учитывать его тип. Например, свайный фундамент для каркасного дома будет рассчитываться по одному принципу, если производить расчёт на столбчатый фундамент под каркасный дом, то принцип уже будет другой.

Кстати, смета строительства тоже будет довольно прилично различаться. Под тяжёлые железобетонные или те же кирпичные строения (или если стены имеют слишком плотный утеплитель) лучше всего, пожалуй, подойдёт, ленточный фундамент, глубина залегания которого достаточно велика.


Монтажная схема столбчатого фундамента для каркасного дома

Если брать каркасный дом, то вполне будет достаточно построить обыкновенный столбчатый фундамент, как для стандартных небольших деревянных домов. Смета строительства будет в итоге относительно небольшой, даже если толщина стен будет велика.

Стоит привести пример расчёта параметров фундамента на конкретном примере. Допустим, столбики фундамента будут иметь диаметр в 0,2 метра. Их высота пусть составляет 2,9 м, а глубина залегания – 1,5 м.

Следовательно, не составит труда рассчитать и их опорную площадь, которая составляет в данном случае 314 кв.см. Его объём равен 0,06 куб.м, а вес будет составлять 143 кг.

При условии, что длина стены будет составлять 30 м (это общая длина всех стен) и если устанавливать опорные столбики фундамента через каждый метр, то их необходимое количество – ровно 30 штук. Соответственно, общий вес фундамента будет равен 4,29 тонны, а площадь – 9420 кв. сам.


Виды столбчатых фундаментов

Чтобы узнать итоговую нагрузку на грунт, необходимо сложить вес дома и фундамента и разделить эту сумму на опорную площадь. В итоге, проведя несколько простых вычислительных арифметических операций, мы рассчитали и вес дома, и вес фундамента (столбчатого) и нагрузку на грунт.

Как видно, сделать это можно легко и самостоятельно, обращаться в проектное бюро и затрачивать за работу инженеров большие деньги не потребуется.

Как рассчитать, сколько надо?

Во главу угла методики подсчёта армирования ленточных оснований заложен принцип преобладания сопротивления грунтового основания над удельной нагрузкой от веса здания или сооружения.

После этого рассчитывают несущую способность ленты, величина которой зависит от полной загрузки наземной части строения. На этом этапе определяют количество и сортамент арматурных стержней, их форму соединения в единый каркас.

Если надавить на какой-либо мягкий предмет, то он прогнётся. Верхняя плоскость сожмётся, а снизу материал растянется. Так и в ленточном фундаменте, верхняя его часть будет испытывать сжатие, а на нижний слой будут воздействовать силы растяжения.

Это физическое явление учитывают при расчёте монолитной ленты. То есть, в верхнем и нижнем поясе закладывают арматуру, которая выдерживает сжатие, а снизу бетон противостоит растяжению.

На основе этого положения было разработано «Руководство по конструированию бетонных и железобетонных конструкций из тяжёлого бетона (без предварительного напряжения)».

Тяжёлый бетон приготавливают из:

  • цемента М 300 – М 800,
  • щебня гранитных пород,
  • среднефракционного песка,
  • воды средней жёсткости с добавкой различных видов пластификаторов.

Его применяют для возведения заливных фундаментных лент.

Кроме этого пользуются Сводом Правил СП 52-101-2003, который содержит рекомендации по расчёту и проектированию, относящиеся к изготовлению и установке армокаркасов ЛФ. Правила согласованы с требованиями СНиП 52-01-2003.

Определение глубины заложения и высоты ленты

В расчёт глубины заложения подошвы ленточного фундамента включают два фактора:

Уровень грунтовых вод

Уровень залегания грунтовых вод легко определить, если рядом с местом строительства есть колодец. Расстояние от уровня земли до поверхности воды в нём будет равно искомому параметру.

В отделе архитектуры и землеустройства местной администрации можно взять копию вертикальной съёмки с привязкой к стройучастку, где будет указан уровень грунтовых вод. Если нет ни того не другого, то этот показатель определяют взятием образцов почвы с помощью бурения грунта.

Глубина промерзания

Знать её необходимо по причине того, что воздействие на влажную почву при минусовой температуре в зимний период вызывает в ней замерзание воды. Этот процесс вызывает пучение грунта потому, что он в это время резко увеличивается в объёме.

Силы пучения могут легко выдавить вверх фундамент дома. Чтобы этого не происходило, подошва ленты должна находиться ниже зоны морозного пучения. Глубину промерзания определяют справочным путём либо таким же способом, как и при установлении уровня грунтовых вод.

Глубина заложения фундаментной ленты должна находиться на отметке выше уровня грунтовых вод и ниже уровня промерзания почвы. Количество продольных рядов зависит от высоты основания. Согласно СНиПу, расстояние между конструкционными рядами арматуры не должно быть более 40 см.

Сколько рядов арматуры нужно для армирования ленточного фундамента высотой 1 метр? Количество рядов в зависимости от высоты основания:

  • до 70 см – без продольной арматуры;
  • от 71 до 90 см – один ряд;
  • от 91 до 130 см – два ряда;
  • от 131 до 170 см – три ряда;
  • от 171 до 210 см – четыре ряда.

Установлено, что на месте строительства грунтовые воды залегают на глубине 1200 мм, а уровень промерзания грунта равен 800 мм. В этом случае глубину заложения ЛФ принимают величиной 1 метр. Высота ленты с учётом нормативной высоты цоколя 150 -200 мм (расстояние от верха фундамента до уровня земли) будет равна 1150 – 1200 мм.

Сбор нагрузки

Максимальная масса строения включает в себя следующее:

  1. Вес всех конструкций дома, включая фундамент.
  2. Снеговая нагрузка на кровлю (СНиП 2.01.07-85).
  3. Вес оборудования: печь, котёл, система трубопроводов, сантехнический приборы, обстановка и пр.
  4. Ориентировочный вес максимального количества людей, одновременно находящихся в доме.

Ширина подошвы

Ширину ленточного заливного фундамента рассчитывают по формуле Tхk/S ≤ R, где:

  • T — удельная нагрузка от максимального веса строения (см. выше);
  • k – коэффициент запаса (1,1);
  • S – площадь подошвы (S = P/T);
  • R – сопротивление грунта.

R = 1,88 кг/см2 (грунт — суглинок), P = 15000 кг, T = 1,8 кг/см2, L – длина ленты 24 м. S = P/T = 8333 см2. Оптимальная ширина ленты будет равна: S/L = 8333/2400 = 3,47 см. Следовательно, ширину ЛФ можно принимать исходя из толщины кладки + выступы ленты по обеим сторонам стены (25 мм х 2 = 50 мм).

При возведении внешнего ограждения в 1 кирпич (250 мм) ширина ЛФ составит 250 +50 = 300 мм = 30 см. Если стены возводят из шлакоблока, то поперечный размер ленты принимают 40 см. Для стен толщиной в 1,5 кладочного элемента фундамент делают шириной 50 см и более.

Сбор нагрузок

Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.

Значения коэффициентов надежности по нагрузке согласно СП 20.13330.2011.

Нормативные значения полезных нагрузок в зависимости от назначения помещения согласно СП 20.13330.2011.

К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.

По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.

Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.

Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.

Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.

Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:

Схема снеговых нагрузок на кровлю.

Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.

Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.

Таблица сбора равномерно распределенных нагрузок

Наименование нагрузкиНормативное значение, кг/м2Коэффициент надежности по нагрузкеРасчётное значение нагрузки, кг/м2
Собственный вес плит перекрытия2751,05290
Собственный вес напольного покрытия1001,2120
Собственный вес гипсокартонных перегородок501,365
Полезная нагрузка2001,2240
Собственный вес стропил и кровли1501,1165
Снеговая нагрузка100*1,4 (мешок)1,4196

Всего: 1076 кг/м2

Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).

Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.

Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.

Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.

Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.

Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.

Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.

Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.

Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.

Утепление и гидроизоляция

Гидроизоляция материалов, расположенных ниже уровня земли это обязательный компонент строительных работ при возведении фундамента. Кроме того, в зависимости от климата, можно рассмотреть вариант обустройства теплоизоляции. Это снижает расходы по утеплению пола на первом этаже.

Видео описание

Наглядно про утепление фундамента в следующем видеоролике:

https://youtube.com/watch?v=0WSyRBc2aUU

Для домов без подвальных помещений, места между землёй и перекрытием засыпаются песком или керамзитом. Во избежание увлажнения можно положить рубероидный лист.

На стенах ленточного основания и ростверке укладывают снаружи плиты из полистирола.

Заключение

При строительстве дома вполне понятно желание руководствоваться принципом, какой фундамент дешевле, такой и построим. Но всегда надо помнить, что экономия должна быть грамотной, а значит, уменьшать стоимость фундамент за счет отклонения от технологии недопустимо.

Пример расчета фундамента

Подсчитаем примерно, какова масса дома размерами 6х6 из оцилиндрованного бревна — древесины сосны естественной влажности. Считаем вес стен, полов, перекрытий и кровли:

Мы получили суммарную массу дома в 13384 кг. Прибавим сюда полезную или эксплуатационную нагрузку — возьмем средние данные. Наш дом размером 6х6 имеет площадь 36 м2. Одно перекрытие на уровне пола и одно чердачное. Подсчитаем:

36 м2*210 кг/м2=7560 кг

36 м2*105 кг/м2=3780 кг.

Суммируем и получаем 11340 кг.

Теперь найдем нагрузку от снежного покрова. Пусть наш дом находится в Москве, площадь горизонтальной проекции крыши составляет 49 м2. По таблице находим, что Москва находится в III климатической зоне и имеет снеговую нагрузку 180 кг/м2.

49 м2 * 180 кг/м2=8820 кг.

Найдем ветровую нагрузку. Наш дом имеет площадь 36 м2. Высоту 5,5 м.

(15*5,5м+40)*36м2=4410 кг

Подведем итог:

Масса дома – 13384 кг. Нагрузки: полезная – 11340 кг., снеговая – 8820 кг, ветровая — 4410 кг.

Суммируем и получаем 37954 кг. Еще нужно прибавить 30% на возможные ошибки в расчетах. В итоге мы получим что нагрузка на фундамент составляет 49340 кг.

Теперь нам необходимо выбрать какой тип фундамента для нас оптимален. Предположим, что грунт у нас песчаный с несущей способностью 2 кг/см2. Если мы нагрузку на фундамент поделим на несущую способность грунта, то получим площадь подошвы фундамента:

49340 / 2 =24670 см2.

Зная площадь, которую должен занимать фундамент можно подобрать наиболее подходящую основу.

Ленточный фундамент

Сначала рассмотрим для нашего дома возможность заложения ленточного фундамента. Площадь подошвы основания поделим на длину ленточного фундамента. Не забываем о внутренней несущей стене, тогда длина фундамента составит 30 м или 3000 см.

24670/3000=8,2 см

Получается, что минимальная ширина ленточного фундамента составит чуть больше 8 см. Но ширина основания должна быть больше толщины стен, а дом сделан из бревна диаметром 20 см, тогда минимальную ширину следует брать больше 20 см.

Подсчитаем необходимое количество бетона. При песчаных грунтах основание можно закладывать на глубину 0,5 м. Перемножаем длину, ширину и глубину фундамента:

30 * 0,5 * 0,2=3 м3 — столько бетона потребуется для заложения ленточного фундамента нашего дома.

Сопротивление грунтов

Показатели сопротивления нагрузке каждого типа грунта зависят от того, насколько глубоко находятся его залежи, а также от показателей его плотности и пористости. С увеличением глубины увеличивается и коэффициент сопротивления.

Поэтому, если планируется выполнение работ по закладке фундамента на глубину менее полутора метра, то сопротивление грунта необходимо рассчитать по формуле

R – расчётное сопротивление, которое можно определить по таблице, приведённой ниже

H – показатель глубины закладки фундамента в соответствии с нулевым уровнем земли (см).

Понятно, что при произведении самостоятельных расчётов придётся приложить немало усилий. Поэтому для облегчения работы можно использовать онлайн калькулятор. Подробнее о расчете сопротивления грунта смотрите в этом видео:

Общая нагрузка на грунт

Важное значение имеют показатели нагрузки на грунт будущего здания. В расчёты следует включить такие факторы:. Общая нагрузка будущей конструкции, с учётом примерной нагрузки основания

Общая нагрузка будущей конструкции, с учётом примерной нагрузки основания

Обращаем внимание, будет ли обустраиваться подвал. Для этого необходимо опираться на данные, представленные в таблице ниже

Суммарную нагрузку используемых элементов в быту, такие как камины, печи, мебель, люди и прочее. Сезонные нагрузки

Например, снежные покровы. Показатели для каждой климатической полосы различно. Так, для средней полосы – 100 кг/м 2 кровли, для южной – 50 кг/м 2 , для северной – 190 кг/м 2

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий